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INTRODUCTION 

 

Every evolution of human history is linked to the discovery of new materials, which allowed us to 

produce tools, structures, and machines with constantly increasing performance. For instance, 

prehistoric ages are named according to the materials used, e.g., stone, bronze, iron. Some 

characterize our current era as the information technology and quantum age marked by the discovery 

of new materials enabling the production of semiconductors and superconductors. For a long time, 

the discovery of new materials has been driven more by chance and empirical knowledge than by a 

systematic pursuit of a particular property. For example, the discovery of iron quenching was possible 

because the iron was heated on a coal fire; the soot deposited on the blade formed an iron-carbon 

alloy: steel. After rapid cooling of this alloy, a tough and hard structure forms: martensite.  

 

 

 

 

 

 

 

 

The layered microstructure of a Damascus steel sword of antiquity that gives its superior mechanical 

properties is comparable to those of modern tool steel used in manufacturing.  

Damascus Steel is one of the most notable historical references to empirical material processing for 

weaponry (See Figure 1 above). Swords made of such steel were extremely sharp. They would not 

bend nor shatter under extreme forces, having extraordinary properties over iron swords of the period, 

making them fabled to be imbued supernatural powers and invincible (perhaps the famed Excalibur 

was a Damascus Steel Sword). The first historical references to such swords emerged in regions of 

modern-day Syria. Writings found in Asia Minor said that to temper a Damascus sword, the blade 

must be heated until it glows ''like the sun rising in the desert. '' It then should be cooled to the color 

of royal purple and plunged ''into the body of a muscular slave'' so that his strength would be 

transferred to the sword. Aside from the horrific brutality and cruelty, this macabre account of 

Damascus Steel 

Modern Tool Steel 
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metallurgy in the Dark Ages has merit from processing and physics of diffusion and phase 

transformation kinetics. Specific phases are formed by controlling the cooling rate and diffusion of 

carbon in the steel. Continually heating, folding the steel, and quenching it at optimal rates form a 

layered microstructure that gives Damascus steel its high hardness, strength, and toughness. Sadly, 

suppose the Dark Ages societies knew the science of metallurgy and that plant oils and other quench 

media are far better for making Damascus steel; sword making could have been a less murderous 

profession. Modern tool steel used for Cutting and other manufacturing applications has similar phase 

distribution and mechanical properties, which are more performant than Damascus steel and are 

produced by well-defined processing steps that emerged from the metallurgical research of the 20th 

century. Chapter XII discusses phase transformation kinetics and continuous cooling curve analysis 

for producing these desired microstructures. 

Previously, every advancement in use and the discovery of new materials had essentially been 

technological. Only within the past century has the production of new materials left empiricism to 

become an engineering science. English uses the term "Materials science and engineering" to 

highlight how fundamental research supports the design of new materials. Materials science is thus a 

common field for physical engineers. In practice, the term "Materials science and engineering" has 

been in use since the 1950s, and materials science is a very young discipline. 

The question arises about what events marked the transformation of materials technology in science. 

As R.W. Cahn states in an article in the scientific journal "Nature Materials" (Vol. 1, pp. 34), this 

transition was achieved when scientists and physicians, in particular, began to be interested in the 

study of "dirty" matter. Until the 1930s, "good science" had to use the purest substances: just 

approaching solid matter was considered an incursion into adventurous and mysterious territory. 

Only in the post-war years did the interest in the effect of impurities in solid conductors pave the way 

for transistors. Those were the times when a more explicit link between structural defects and 

mechanical properties of metals was finally drawn. For example, the very peculiar arrangement of 

carbon within iron gives the steel its characteristic high hardness. Furthermore, due to the dislocation 

glide (motion), steel can be deformed and shaped into different forms and not shatter due to brittle 

fracture. 

The 21st century has ushered in remarkable advancements in metallurgy research, focusing on 

developing materials with superior performance and designed properties optimized for applications. 

One of the key areas of exploration is advanced materials, where high-strength alloys, nanomaterials, 

and shape memory alloys are gaining prominence. High-strength alloys, particularly for aerospace, 

are engineered to be lighter, more fuel-efficient, and capable of withstanding extreme conditions, 

which is vital for commercial and defense aviation. Meanwhile, integrating nanotechnology in 

metallurgy has opened up new possibilities for creating nanomaterials and nanocomposites, which 

can be found in electronics, sports equipment, and more. Shape memory alloys, which have the unique 

ability to return to their original shape after deformation, are making strides in medical devices, 

robotics, and actuators, demonstrating the versatility of metallurgical innovations in modern 

technology. 

Sustainability is another crucial focus in 21st-century metallurgy research, driven by growing 

environmental concerns. Researchers are increasingly exploring green materials that reduce carbon 

footprints and contribute to a circular economy. Additionally, metallurgy plays a critical role in 
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renewable energy, particularly in developing components for wind turbines, solar panels, and 

batteries, which are essential for a sustainable energy future. The advent of advanced manufacturing 

techniques, such as additive manufacturing and 3D metal printing, is further revolutionizing the field 

by enabling the production of complex metal components with enhanced properties and reduced 

waste. Moreover, incorporating artificial intelligence in material discovery accelerates innovation, 

allowing for more efficient design and development of new materials. As the field progresses, 

metallurgy contributes significantly to biomedical advancements by developing biocompatible metals 

for implants and prosthetics. Despite these advancements, challenges such as sustainability, resource 

scarcity, and environmental concerns persist. Metallurgical remains important, with a continued 

emphasis on creating stronger, lighter, more eco-friendly materials and processes. 

The 21st century of material physics also marks a paradigm shift away from empirical research, 

making explicit links between applications and specific alloys or compounds. The empirical research 

method takes decades to develop new materials for applications and is much too slow. The Material 

by Design concept was formed from large-scale initiatives and the need to design new materials with 

tailored properties for specific applications. Researchers use materials-by-design strategies to 

improve fundamental understanding and develop tools for critical materials issues. These efforts help 

to identify gaps and improve material characterization tools and models at different length scales, 

from the atomic level to bulk properties, advancing computational tools for designing better materials. 

This new modality of materials design is essential for developing nanotechnology and quantum 

materials and technologies. This course provides a fundamental background of structural defects in 

crystal solids and their link to their structural and mechanical properties. Solid-state physics courses 

broadly discuss transport, magnetic, optical, and electrical properties. This course aims to provide 

basic notions and a general method enabling physicists to interpret the mechanical properties of solid 

materials typically encountered during their career as professional engineers and may form the basis 

to drive new avenues of research in their academic careers. 

 

The scientific method's first stage is based on 

observing natural phenomena. For example, the figure 

below represents the stress-strain curve of a 

crystalline sample undergoing a tensile test with fixed 

elongation velocity. If the tensile test is interrupted 

before the sample breaks and the stress is brought 

back to zero, two cases may arise: 

 

 

 

 

Schematic representation of a stress-strain curve of a metallic sample in a tensile test at imposed 

Velocity. 
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1) If the maximum stress was lower than a value y, the unloading curve overlaps with the loading 

curve. In this case, the sample has the same shape at the end of the unloading as before the stress was 

applied (absence of permanent deformation). The temporary deformation is called elastic strain. The 

stress y is the yield stress of the material. The elastic behavior of a solid body is defined by the return 

to the initial zero deformation once all applied stresses vanish. Solid materials - as opposed to liquids 

and gases - show this behavior under lower stresses. 

2) If the maximum actual stress a has peaked to a higher value than the yield strength p, then the 

stress-strain curve is no longer reversible, and the sample has a residual deformation lp, called plastic 

strain. Moreover, if another stress is applied, the loading will follow line A-P as in the previous 

unloading, a line parallel to the initial elastic slope O-E. The new yield strength will be in point P at 

a stress value of p, which is called plastic flow stress and has the same role that y had before the 

solid has thus strengthened. 

3) Suppose the deformation is continued until the stress R, the sample breaks, and the ultimate tensile 

strength is defined as the maximum stress on the stress-strain curve before rupture, the fracture strain 

being the maximum plastic strain that occurs at this point. This behavior can be explained through 

models of the material's microstructure and its evolution under the Application of stresses. 

In this sense, the elastic behavior should be related to the crystal structure and the type of atomic 

bonding. The first three chapters of this course discuss elastic theory and its relation to materials' 

structure and mechanical behavior. The non-linearities and the permanent deformations observed 

beyond the elastic yield limit can be explained by the presence of defects in the crystal structure: point 

and line defects called dislocations. From Chapter IV to Chapter X, we discuss the motion of these 

defects and the methods to measure them. Finally,  the last part of the course focuses on the structural 

changes (solidification, phase transitions) that arise during the fabrication and processing of actual 

materials. 


