

PHYSICS SCHOOL

PHYSICS OF MATERIALS

Mechanical Properties and Crystal Defects in Solids

Dr. Thomas La Grange

Master Student Course in Physics

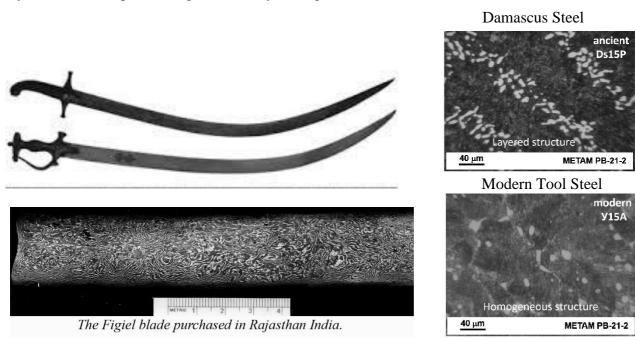
Lausanne – Fall 2024

TABLE OF CONTENTS

INT	INTRODUCTION	
CHA	APTER I Atomic bonds	
1.1	Classes of materials	5
1.2	Atomic bonds	7
	1.2.1 Ionic bond	8
	1.2.2 Van der Waals interactions	10
	1.2.3 Covalent bond	11
	1.2.4 Metallic bond1.2.5 Atomic bonds and materials	14 15
	11210 1 HOME COMES and Materials	10
Bibli	ography	15
CHA	APTER II Crystal structure	
2.1	Crystal lattices	17
	2.1.1 Historical references	17
	2.1.2 Description of a crystal lattice	18
	2.1.3 Direct lattice and reciprocal lattice	18
	2.1.4 Vector operations: dot product, cross product, metric2.1.5 Crystal systems	21 22
2.2	Compact structures	23
2.3	Coordination number	27
CHA	APTER III Theory of elasticity	
3.1	Simple laws and linear elasticity	29
3.2	Strain tensor	32
3.3	Stress tensor	34
3.4	Thermodynamic review	35
3.5	Thermodynamics and deformation	36
	3.5.1 Work	36
	3.5.2 Energy	37
2 -	3.5.3 Physical origin of elasticity	38
3.6	Hooke's law	39
	3.6.1 Deformation of isotropic solids3.6.2 Temperature effects	39 42
	5.0.2 TORRECAUTE CITECTS	42

	3.6.3 3.6.4	Equilibrium equation of isotropic bodies Generalized Hooke's law	42 43
СНА	PTER	R IV Defects in crystals	
4.1	Intro	duction	47
4.2	Point 4.2.1 4.2.2 4.2.3	· · · · · · · · · · · · · · · · · · ·	52 54 59 65
СНА	PTER	XV Diffusion	
5.1	Fund 5.1.1 5.1.2	amental equations of diffusion Phenomenological equations Solution to Fick's second law	69 69 71
5.2 5.3	Self-c 5.3.1	sion coefficient and random motion liffusion The mechanisms of diffusion Vacancy mechanism	72 74 74 75
5.4 5.5 5.6 5.7	Applied force to the diffusing particle: Einstein's equation Diffusion couple: the Boltzmann-Matano method The Kirkendall effect Real solutions		
СНА	PTER	VI Plastic deformation	
Intro	duction	to the dislocation model	89
6.1	Pheno 6.1.1 6.1.2	omenology of plastic deformation Experimental observations Relations between sliding and crystal structure	89 89 90
6.2	6.2.1	Rigid gliding over a plane Localized gliding Creation of a dislocation	92 92 93 100

10 ² 10 ⁵
104
10.
107
108
109
ion and plastic deformation 110
111
111
113
113
115
115
slocations
119
120
120
123
124
124
125
126
re 127
ations 128
129
129
130
orces 132
133
133
135
137
137
al dislocation,
mples 140
rgy 145


	7.6.4 7.6.5	Measure Cross-sli	p of the energy for a stacking fault	147	
CHA	APTER	VIII	Dislocation kinetics		
8.1	Relati	on betw	een shear and macroscopic deformation	153	
8.2	Strain	curve		154	
8.3			f dislocations with the crystal lattice	157	
8.4	Propa	gation r	egulated by the interaction with other		
	disloca			159	
	8.4.1 8.4.2	-	stance stresses due to the Frank network stance interactions	159 164	
8.5	Propagation controlled by the interaction with a solid				
	solutio			164	
	8.5.1	of the so	interaction between dislocations and atoms	164	
	8.5.2		ion of the dislocation through a distribution	165	
8.6	Intera		ith moving impurities	168	
	8.6.1	Portevin	- Le Châtelier effect (qualitative description)	169	
8.7	Intera	ction wi	th precipitates	170	
	8.7.1	_	of a precipitate	170	
	8.7.2 8.7.3	• 1	nechanism tion between the bypass and cutting mechanisms	170 171	
8.8	Intera	ction wi	th the grain boundaries: Hall-Petch law	172	
CHA	APTER	IX Th	ermal activation of the dislocation me	otion	
9.1	Introd	luction		175	
9.2	Strain	rate		176	
9.3	Gibbs free energy calculation during the crossing of an				
	obsta	cle		177	
	9.3.1	-	in terms of applied stress	177	
9.4	9.3.2 M oosi	-	in terms of effective stress	182 18 4	
9.4 9.5	Measure of thermodynamic quantities Climb of dislocations				
7.3	9.5.1			187	
	9.5.2		ic aspect of the climb	188	
	9.5.3		n a dislocation	189	

	9.5.4 9.5.5	Bardeen-Herring sources Velocity of the climb of a dislocation	191 192
	9.5.6 9.5.7	Climb governed by diffusion in the crystal Application to stationary creep	196 196
	APTER ocations	X Electron Microscopy characterization of s	
10.1	Intro	duction	199
10.2	Trans	smission Electron Microscope (TEM)	199
	10.2.1	Basics and optical design	200
	10.2.2	Operating modes	201
10.3		cation imaging	203
	10.3.1	Dynamical Diffraction theory	203
	10.3.2	Dislocation contrast theory	207
	10.3.2	Weak beam darkfield imaging	209
		Burger's vector determination	212
	10.3.4	Stacking fault imaging	214
10.4	High-	Resolution Scanning TEM Techniques	215
СНА	PTER	XI Phase transformations I: solidification	
11.1	Intro	duction	220
11.2	Thern	nodynamics background	220
	11.2.1	Calculation of the mixing entropy (ideal solid solution)	220
	11.2.2	Formation heat or mixing enthalpy ΔH _m calculation	
		(real solution)	221
	11.2.3	Chemical potential and activity	224
11.3	Binar	y phase diagrams	225
	11.3.1	Chemical potential	225
	11.3.2	Free energy of a mixture of phases	225
11.4	Solidi	fication	231
	11.4.1	Nucleation	234
	11.4.2		237
	11.4.3	` '	239
	11.4.4	Crystal growth	240
	11.4.5	Dendritic growth in pure metals	241

11.5	Solidi	fication of binary alloys	245
	11.5.1	Thermodynamic equilibrium	246
	11.5.2	Thermodynamic equilibrium in the liquid - no diffusion in	
		the solid	246
	11.5.3	Solidification controlled by diffusion in the liquid phase	248
11.6	Solidi	fication structures of alloys	250
	11.6.1	Cellular texture	250
	11.6.2	Dendritic texture	251
	11.6.3	Eutectic solidification	252
11.7	Solidi	fication of a bar	256
	11.7.1	Crystallization of the bar	256
	APTER sforma	XII Phase transformations II: Solid state tions	
12.1	Intro	duction	258
12.2	Trans	formations with diffusion	259
	12.2.1	Homogeneous nucleation	259
	12.2.2	Heterogeneous nucleation	265
12.3	Trans	formation kinetics: Avrami-Johnson-Me hl equation	ı 266
12.4	Exam	ples of TTT diagrams	268
	12.4.1	CCT diagrams (Continuous cooling transformation)	270
12.5	Trans	formations without diffusion	271
12.6	The martensitic transformation		
	12.6.1	Crystallography of the martensitic transformation	272
	12.6.2	Thermodynamic of the martensitic transformation	276
12.7	Thern	noelastic alloys: memory effect and pseudoelasticity	280
	12.7.1	Shape memory effect	280
	12.7.2	Pseudoelasticity	

INTRODUCTION

Every evolution of human history is linked to the discovery of new materials, which allowed us to produce tools, structures, and machines with constantly increasing performance. For instance, prehistoric ages are named according to the materials used, e.g., stone, bronze, iron. Some characterize our current era as the information technology and quantum age marked by the discovery of new materials enabling the production of semiconductors and superconductors. For a long time, the discovery of new materials has been driven more by chance and empirical knowledge than by a systematic pursuit of a particular property. For example, the discovery of iron quenching was possible because the iron was heated on a coal fire; the soot deposited on the blade formed an iron-carbon alloy: steel. After rapid cooling of this alloy, a tough and hard structure forms: martensite.

The layered microstructure of a Damascus steel sword of antiquity that gives its superior mechanical properties is comparable to those of modern tool steel used in manufacturing.

Damascus Steel is one of the most notable historical references to empirical material processing for weaponry (See Figure 1 above). Swords made of such steel were extremely sharp. They would not bend nor shatter under extreme forces, having extraordinary properties over iron swords of the period, making them fabled to be imbued supernatural powers and invincible (perhaps the famed Excalibur was a Damascus Steel Sword). The first historical references to such swords emerged in regions of modern-day Syria. Writings found in Asia Minor said that to temper a Damascus sword, the blade must be heated until it glows "like the sun rising in the desert." It then should be cooled to the color of royal purple and plunged "into the body of a muscular slave" so that his strength would be transferred to the sword. Aside from the horrific brutality and cruelty, this macabre account of

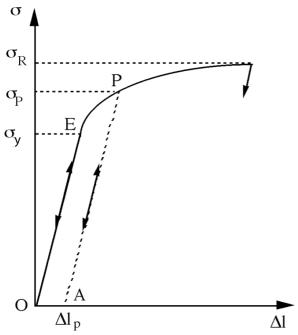
page 1 Introduction Physics of Materials

metallurgy in the Dark Ages has merit from processing and physics of diffusion and phase transformation kinetics. Specific phases are formed by controlling the cooling rate and diffusion of carbon in the steel. Continually heating, folding the steel, and quenching it at optimal rates form a layered microstructure that gives Damascus steel its high hardness, strength, and toughness. Sadly, suppose the Dark Ages societies knew the science of metallurgy and that plant oils and other quench media are far better for making Damascus steel; sword making could have been a less murderous profession. Modern tool steel used for Cutting and other manufacturing applications has similar phase distribution and mechanical properties, which are more performant than Damascus steel and are produced by well-defined processing steps that emerged from the metallurgical research of the 20th century. Chapter XII discusses phase transformation kinetics and continuous cooling curve analysis for producing these desired microstructures.

Previously, every advancement in use and the discovery of new materials had essentially been technological. Only within the past century has the production of new materials left empiricism to become an engineering science. English uses the term "Materials science and engineering" to highlight how fundamental research supports the design of new materials. Materials science is thus a common field for physical engineers. In practice, the term "Materials science and engineering" has been in use since the 1950s, and materials science is a very young discipline.

The question arises about what events marked the transformation of materials technology in science. As R.W. Cahn states in an article in the scientific journal "Nature Materials" (Vol. 1, pp. 34), this transition was achieved when scientists and physicians, in particular, began to be interested in the study of "dirty" matter. Until the 1930s, "good science" had to use the purest substances: just approaching solid matter was considered an incursion into adventurous and mysterious territory.

Only in the post-war years did the interest in the effect of impurities in solid conductors pave the way for transistors. Those were the times when a more explicit link between structural defects and mechanical properties of metals was finally drawn. For example, the very peculiar arrangement of carbon within iron gives the steel its characteristic high hardness. Furthermore, due to the dislocation glide (motion), steel can be deformed and shaped into different forms and not shatter due to brittle fracture.


The 21st century has ushered in remarkable advancements in metallurgy research, focusing on developing materials with superior performance and designed properties optimized for applications. One of the key areas of exploration is advanced materials, where high-strength alloys, nanomaterials, and shape memory alloys are gaining prominence. High-strength alloys, particularly for aerospace, are engineered to be lighter, more fuel-efficient, and capable of withstanding extreme conditions, which is vital for commercial and defense aviation. Meanwhile, integrating nanotechnology in metallurgy has opened up new possibilities for creating nanomaterials and nanocomposites, which can be found in electronics, sports equipment, and more. Shape memory alloys, which have the unique ability to return to their original shape after deformation, are making strides in medical devices, robotics, and actuators, demonstrating the versatility of metallurgical innovations in modern technology.

Sustainability is another crucial focus in 21st-century metallurgy research, driven by growing environmental concerns. Researchers are increasingly exploring green materials that reduce carbon footprints and contribute to a circular economy. Additionally, metallurgy plays a critical role in

page 2 Introduction Physics of Materials

renewable energy, particularly in developing components for wind turbines, solar panels, and batteries, which are essential for a sustainable energy future. The advent of advanced manufacturing techniques, such as additive manufacturing and 3D metal printing, is further revolutionizing the field by enabling the production of complex metal components with enhanced properties and reduced waste. Moreover, incorporating artificial intelligence in material discovery accelerates innovation, allowing for more efficient design and development of new materials. As the field progresses, metallurgy contributes significantly to biomedical advancements by developing biocompatible metals for implants and prosthetics. Despite these advancements, challenges such as sustainability, resource scarcity, and environmental concerns persist. Metallurgical remains important, with a continued emphasis on creating stronger, lighter, more eco-friendly materials and processes.

The 21st century of material physics also marks a paradigm shift away from empirical research, making explicit links between applications and specific alloys or compounds. The empirical research method takes decades to develop new materials for applications and is much too slow. The Material by Design concept was formed from large-scale initiatives and the need to design new materials with tailored properties for specific applications. Researchers use materials-by-design strategies to improve fundamental understanding and develop tools for critical materials issues. These efforts help to identify gaps and improve material characterization tools and models at different length scales, from the atomic level to bulk properties, advancing computational tools for designing better materials. This new modality of materials design is essential for developing nanotechnology and quantum materials and technologies. This course provides a fundamental background of structural defects in crystal solids and their link to their structural and mechanical properties. Solid-state physics courses broadly discuss transport, magnetic, optical, and electrical properties. This course aims to provide basic notions and a general method enabling physicists to interpret the mechanical properties of solid materials typically encountered during their career as professional engineers and may form the basis to drive new avenues of research in their academic careers.

The scientific method's first stage is based on observing natural phenomena. For example, the figure below represents the stress-strain curve of a crystalline sample undergoing a tensile test with fixed elongation velocity. If the tensile test is interrupted before the sample breaks and the stress is brought back to zero, two cases may arise:

Schematic representation of a stress-strain curve of a metallic sample in a tensile test at imposed Velocity.

page 3 Introduction Physics of Materials

- 1) If the maximum stress was lower than a value σ_y , the unloading curve overlaps with the loading curve. In this case, the sample has the same shape at the end of the unloading as before the stress was applied (absence of permanent deformation). The temporary deformation is called elastic strain. The stress σ_y is the **yield stress** of the material. The elastic behavior of a solid body is defined by the return to the initial zero deformation once all applied stresses vanish. Solid materials as opposed to liquids and gases show this behavior under lower stresses.
- 2) If the maximum actual stress σ_a has peaked to a higher value than the yield strength σ_p , then the stress-strain curve is no longer reversible, and the sample has a residual deformation Δl_p , called plastic strain. Moreover, if another stress is applied, the loading will follow line A-P as in the previous unloading, a line parallel to the initial elastic slope O-E. The new yield strength will be in point P at a stress value of σ_p , which is called plastic flow stress and has the same role that σ_y had before the solid has thus strengthened.
- 3) Suppose the deformation is continued until the stress σ_R , the sample breaks, and the ultimate tensile strength is defined as the maximum stress on the stress-strain curve before rupture, the fracture strain being the maximum plastic strain that occurs at this point. This behavior can be explained through models of the material's microstructure and its evolution under the Application of stresses.

In this sense, the elastic behavior should be related to the crystal structure and the type of atomic bonding. The first three chapters of this course discuss elastic theory and its relation to materials' structure and mechanical behavior. The non-linearities and the permanent deformations observed beyond the elastic yield limit can be explained by the presence of defects in the crystal structure: point and line defects called dislocations. From Chapter IV to Chapter X, we discuss the motion of these defects and the methods to measure them. Finally, the last part of the course focuses on the structural changes (solidification, phase transitions) that arise during the fabrication and processing of actual materials.

page 4 Introduction Physics of Materials